سیستم های هیدرولیک

‏تعریف و تاریخچه هیدرولیک

هیدرولیک از کلمه یونانی " هیدرو " مشتق گردیده است و این کلمه بمعنای جریان حرکات مایعات می باشد. در قرون گذشته مقصود از هیدرولیک فقط آب بوده و البته بعدها عنوان هیدرولیک مفهوم بیشتری بخود گرفت و معنی و مفهوم آن بررسی در مورد بهره برداری بیشتری از آب و حرکت دادن چرخ های آبی و مهندسی آب بوده است.

مفهوم هیدرولیک در این قرن دیگر مختص به آب نبوده بلکه دامنه وسیعتری بخود گرفته و شامل قواعد و کاربرد مایعات دیگری، بخصوص " روغن معدنی " می باشد، زیرا آب بعلت خاصیت زنگ زدگی، در صنایع نمی تواند بعنوان انتقال دهنده انرژی مورداستفاده قرار گیرد و بعلت آنکه روغن خاصیت ضد زنگ زدگی دارد، امروزه در صنایع از آن بخصوص برای انتقال انرژی در سیستم کنترل استفاده بسیار می گردد.

بطور خلاصه می توان گفت:

علمی که به بررسی انتقال و تبدیل نیرو توسط مایعات می پردازد، " هیدرولیک " نامیده می شود.

از آنجاییکه هیدرولیک آبی دارای خاصیت زنگ زدگی است لذا در صنایع از هیدرولیک روغنی هم بخاطر روغن کاری قطعات در حین کار و هم بخاطر انتقال انرژی در سیستم های کنترل استفاده می شود . وقتیکه در صنعت از هیدرولیک نام برده می شود، مقصود همان "هیدرولیک روغنی" می باشد.

بطور دقیق می توان گفت که: حوزه کاربرد هیدرولیک روغنی استفاده از انرژی دینامیکی و استاتیکی آن بوده و در مهندسی کنترل برای انتقال سیگنال ها و تولید نیرو می باشد.

وسائل هیدرولیکی که نحوه استفاده هیدرولیک را در صنعت میسر می سازد خود دارای تاریخچه بسیار قدیمی می باشد. یکی از قدیمی ترین این وسائل، پمپ های هیدرولیکی بوده، که برای اولین بار کتزی بیوس یونانی در حدود اواسط قرن سوم قبل از مسیح، پمپی از نوع پیستون اهرمی که دارای دو سیلندر بود اختراع و ساخته است.

تا اوائل قرن هشتم دیگر در این زمینه وسیله جدیدی پدید نیامد و در اوائل این قرن انواع چرخ های آبی اختراع و رواج بسیار پیدا نمود.

قرن شانزده را میتوان توسعه پمپ های آبی دانست و در این قرن بود که انواع پمپ با ساختمانهای مختلفی پدیدار گردیدند و اصول ساختمانی این پمپ ها، امروزه بخصوص از نوع چرخ دنده ای، هنوز هم مورد توجه و اهمیت بسیاری را دارا می باشد.

در اواخر قرن شانزدهم اصول ساختمان پرس هیدرولیکی طراحی گردیده و حدوداً بعد از یک قرن اولین پرس هیدرولیکی که جنبه عملی داشت ، شروع بکار نمود.

قرن نوزدهم زمان کاربرد پرسهای هیدرولیک آبی بود و اوائل قرن بیستم را میتوان زمان شروع توسعه فناوری هیدرولیکی روغنی در صنایع و تاسیسات صنعتی دانست.

  •       سال 1905 پیدایش گیربکس هیدرواستاتیکی تا فشار 40 بار
  •       سال 1910 پیدایش ماشین های پیستون شعاعی
  •       سال 1922 پیدایش ماشین های شعاعی با دور سریع
  •       سال 1924 پیدایش ماشین های پیستون محوری با محور مایل
  •       سال 1940 پیدایش و تولید انواع مختلف وسائل و ابزار هیدرولیکی برای فشارهائی بیش از 350 بار ، که بعضی از آن وسایل در حال حاضر بطور سری تولید میگردد.

توسعه وسیع و کاربرد هیدرولیک روغنی پس از جنگ جهانی دوم پدید آمد ، ودر اثر همین توسعه ،  بسیاری از قطعات و لوازم هیدرولیک روغنی در حال حاضر بصورت استاندارد شده تولید میگردند.

خواص هیدرولیک روغنی و کاربرد آن در صنایع 

استفاده از هیدرولیک روغنی به طراحان ماشین امکانات جدیدی را داده ، که میتوانند به نحو ساده تری ایده و طرح خود را عملی سازند، بخصوص قطعات استاندارد شده هیدرولیک روغنی کمک بسیار جامعی در حل مسائل طراحان مینماید.

امروزه طراح ماشین میتواند با کمک هیدرولیک روغنی مسایل پیچیده کنترل مکانیکی را بنحو ساده تری و در زمان کوتاه تری حل نموده و در نتیجه طرح را با مخازن کمتری عرضه نماید.

خواص مثبت هیدرولیک روغنی

  •       تولید و انتقال نیروهای قوی توسط قطعات کوچک هیدرولیکی ، که دارای وزن کمتری بوده و نسبت وزنی آنها نسبت به دستگاههای الکتریکی 1 به 10 میباشد.
  •       نصب ساده قطعات بعلت استاندارد بودن آنها
  •       تبدیل ساده حرکت دورانی به حرکت خطی اسیلاتوری (رفت و برگشتی)
  •       قابلیت تنظیم و کنترل قطعات هیدرولیکی
  •       امکان سریع معکوس کردن جهت حرکت
  •       استارت حرکت قطعات کار کننده هیدرولیکی ، در موقعیکه زیر بار قرار گرفته باشند.
  •       قابلیت تنظیم غیر پله ئی نیرو ، فشار ، گشتاور، سرعت قطعات کار کننده
  •       ازدیاد عمر کاری قطعات هیدرولیکی در اثر موجودیت روغن در این قطعات
  •       مراقبت ساده دستگاهها و تاسیسات هیدرولیکی توسط مانومتر
  •       امکان اتوماتیک کردن حرکات

در مقابل این خواص مثبت ، البته خواص منفی نیز در هیدرولیک موجود است که طراحان بایستی با آنها نیز آشنا گردند ، البته لازم بتذکر است که بزرگترین خاصیت منفی هیدرولیک ، افت فشار میباشد ، که در حین انتقال مایع فشرده پدید می آید.

خواص منفی هیدرولیک روغنی

  •     خطر در موقع کار با فشارهای قوی ، لذا توجه بیشتری بایستی به محکم وجفت شدن مهره ماسورهها با لوله ها و دهانه تغذیه و مسیر کار قطعات کار کننده نمود
  •     راندمان کمتر مولدهای نیروی هیدرولیکی نسبت به مولدهای نیروی مکانیکی، بعلت نشت فشار روغن و همچنین افت فشار در اثر اصطکاک مایعات در لوله و قطعات
  •     بعلت قابلیت تراکمی روغن و همچنین نشت آن ، امکان سینکرون کردن جریان حرکات بطور دقیق میسر نمی باشد.
  •     گرانی قطعات در اثر بالا بودن مخارج تولید.

کاربرد هیدرولیک امروزه در اغلب صنایع بخصوص صنایع ذیل متداول میباشد:

  •       ماشین ابزار
  •       پرس سازی
  •       تاسیسات صنایع سنگین
  •       ماشین های راه و ساختمان و معادن
  •       هواپیما سازی
  •       کشتی سازی

تبدیل انرژی در تاسیسات هیدرولیکی

انرژی مکانیکی اغلب توسط موتورهای احتراقی و یا الکترو موتورها تولید میگردد، در هیدرو پمپها تبدیل به انرژی هیدرولیکی گشته و این انرژی از طریق وسائل هیدرولیکی به قطعات کار کننده هیدرولیکی منتقل میگردد، واز این قطعات کارکننده میتوان مجددا انرژی مکانیکی را بدست آورد.

‏هیدرولیک

مایعات تقریباً تراکم ناپذیر هستند. این ویژگی سبب شده است که از مایعات به عنوان وسیله مناسبی برای تبدیل و انتقال کار استفاده شود. بنابراین می‌توان از آنها برای طراحی ماشینهایی که در عین سادگی، با نیروی محرک خیلی کم بتواند نیروی مقاوم فوق العاده زیادی را جابجا نماید، استفاده نمود. به این ویژگی و همچنین دانش مطالعه این ویژگی هیدرولیک گفته می‌شود.

امروزه در بسیاری از فرآیندهای صنعتی ، انتقال قدرت آن هم به صورت کم هزینه و با دقت زیاد مورد نظر است در همین راستا بکارگیری سیال تحت فشار در انتقال و کنترل قدرت در تمام شاخه های صنعت رو به گسترش است. استفاده از قدرت سیال به دو شاخه مهم هیدرولیک و نیوماتیک ( که جدیدتر است ) تقسیم میشود . از نیوماتیک در مواردی که نیروهای نسبتا پایین (حدود یک تن) و سرعت های حرکتی بالا مورد نیاز باشد (مانند سیستمهایی که در قسمتهای محرک رباتها بکار می روند) استفاده میکنند در صورتیکه کاربردهای سیستمهای هیدرولیک عمدتا در مواردی است که قدرتهای بالا و سرعت های کنترل شده دقیق مورد نظر باشد(مانند جک های هیدرولیک ، ترمز و فرمان هیدرولیک و...). حال این سوال پیش میاید که مزایای یک سیستم هیدرولیک یا نیوماتیک نسبت به سایر سیستمهای مکانیکی یا الکتریکی چیست؟در جواب می توان به موارد زیر اشاره کرد:

۱) طراحی ساده

۲) قابلیت افزایش نیرو

۳) سادگی و دقت کنترل

۴) انعطاف پذیری

۵)راندمان بالا

۶) اطمینان: در سیستم های هیدرولیک و نیوماتیک نسبت به سایر سیستمهای مکانیکی قطعات محرک کمتری وجود دارد و میتوان در هر نقطه به حرکتهای خطی یا دورانی با قدرت بالا و کنترل مناسب دست یافت ، چون انتقال قدرت توسط جریان سیال پر فشار در خطوط انتقال (لوله ها و شیلنگ ها) صورت میگیرد ولی در سیستمهای مکانیکی دیگر برای انتقال قدرت از اجزایی مانند بادامک ، چرخ دنده ، گاردان ، اهرم ، کلاچ و... استفاده میکنند. در این سیستمها میتوان با اعمال نیروی کم به نیروی بالا و دقیق دست یافت همچنین میتوان نیرو های بزرگ خروجی را با اعمال نیروی کمی (مانند بازو بسته کردن شیرها و ...) کنترل نمود. استفاده از شیلنگ های انعطاف پذیر ، سیستم های هیدرولیک و نیوماتیک را به سیستمهای انعطاف پذیری تبدیل میکند که در آنها از محدودیتهای مکانی که برای نصب سیستمهای دیگر به چشم می خورد خبری نیست. سیستم های هیدرولیک و نیوماتیک به خاطر اصطکاک کم و هزینه پایین از راندمان بالایی برخوردار هستند همچنین با استفاده از شیرهای اطمینان و سوئیچهای فشاری و حرارتی میتوان سیستمی مقاوم در برابر بارهای ناگهانی ، حرارت یا فشار بیش از حد ساخت که نشان از اطمینان بالای این سیستمها دارد.

اکنون که به مزایای سیستم های هیدرولیک و نیوماتیک پی بردیم به توضیح ساده ای در مورد طرز کار این سیستمها خواهیم پرداخت. برای انتقال قدرت به یک سیال تحت فشار (تراکم پذیر یا تراکم ناپذیر) احتیاج داریم که توسط پمپ های هیدرولیک میتوان نیروی مکانیکی را تبدیل به قدرت سیال تحت فشار نمود. مرحله بعد انتقال نیرو به نقطه دلخواه است که این وظیفه را لوله ها، شیلنگ ها و بست ها به عهده میگیرند . بعد از کنترل فشار و تعیین جهت جریان توسط شیرها سیال تحت فشار به سمت عملگرها (سیلندرها یا موتور های هیدرولیک ) هدایت میشوند تا قدرت سیال به نیروی مکانیکی مورد نیاز(به صورت خطی یا دورانی ) تبدیل شود. اساس کار تمام سیستم های هیدرولیکی و نیوماتیکی بر قانون پاسکال استوار است:

● قانون پاسکال:

 ۱) فشار سرتاسر سیال در حال سکون یکسان است .(با صرف نظر از وزن سیال) ۲) در هر لحظه فشار استاتیکی در تمام جهات یکسان است. ۳) فشار سیال در تماس با سطوح بصورت عمودی وارد میگردد. کار سیستمهای نیوماتیک مشابه سیستم های هیدرولیک است فقط در آن به جای سیال تراکم ناپذیر مانند روغن از سیال تراکم پذیر مانند هوا استفاده می کنند . در سیستمهای نیوماتیک برای دست یافتن به یک سیال پرفشار ، هوا را توسط یک کمپرسور فشرده کرده تا به فشار دلخواه برسد سپس آنرا در یک مخزن ذخیره می کنند، البته دمای هوا پس از فشرده شدن بشدت بالا میرود که می تواند به قطعات سیستم آسیب برساند لذا هوای فشرده قبل از هدایت به خطوط انتقال قدرت باید خنک شود. به دلیل وجود بخار آب در هوای فشرده و پدیده میعان در فرایند خنک سازی باید از یک واحد بهینه سازی برای خشک کردن هوای پر فشار استفاده کرد. اکنون بعد از آشنایی مختصر با طرز کار سیستمهای هیدرولیکی و نیوماتیکی به معرفی اجزای یک سیستم هیدرولیکی و نیوماتیکی می پردازیم.

● اجزای تشکیل دهنده سیستم های هیدرولیکی:

 ۱) مخزن : جهت نگهداری سیال ۲) پمپ : جهت به جریان انداختن سیال در سیستم که توسط الکترو موتور یا ۳) موتور های احتراق داخلی به کار انداخته می شوند. ۴) شیرها : برای کنترل فشار ، جریان و جهت حرکت سیال ۵) عملگرها : جهت تبدیل انرژی سیال تحت فشار به نیروی مکانیکی مولد کار(سیلندرهای هیدرولیک برای ایجاد حرکت خطی و موتور های هیدرولیک برای ایجاد حرکت دورانی).

● اجزای تشکیل دهنده سیستم های نیوماتیکی:

۱) کمپرسور ۲) خنک کننده و خشک کننده هوای تحت فشار ۳) مخزن ذخیره هوای تحت فشار ۴) شیرهای کنترل ۵) عملگرها

● یک مقایسه کلی بین سیستمهای هیدرولیک و نیوماتیک:

۱) در سیستمهای نیوماتیک از سیال تراکم پذیر مثل هوا و در سیستمهای هیدرولیک از سیال تراکم ناپذیر مثل روغن استفاده می کنند. ۲) در سیستمهای هیدرولیک روغن علاوه بر انتقال قدرت وظیفه روغن کاری قطعات داخلی سیستم را نیز بر عهده دارد ولی در نیوماتیک علاوه بر روغن کاری قطعات، باید رطوبت موجود در هوا را نیز از بین برد ولی در هر دو سیستم سیال باید عاری از هر گونه گرد و غبار و نا خالصی باشد ۳) فشار در سیستمهای هیدرولیکی بمراتب بیشتر از فشار در سیستمهای نیوماتیکی می باشد ، حتی در مواقع خاص به ۱۰۰۰ مگا پاسکال هم میرسد ، در نتیجه قطعات سیستمهای هیدرولیکی باید از مقاومت بیشتری برخوردار باشند. ۴) در سرعت های پایین دقت محرک های نیوماتیکی بسیار نامطلوب است در صورتی که دقت محرک های هیدرولیکی در هر سرعتی رضایت بخش است . ۵) در سیستمهای نیوماتیکی با سیال هوا نیاز به لوله های بازگشتی و مخزن نگهداری هوا نمی باشد. ۶) سیستمهای نیوماتیک از بازده کمتری نسبت به سیستمهای هیدرولیکی برخوردارند.

 

جک هیدرولک

دید کلی

مایعات تقریبا تراکم ناپذیر هستند. این ویژگی سبب شده است که از مایعات به عنوان وسیله مناسبی برای تبدیل و انتقال کار استفاده شود. بنابراین می‌توان از آنها برای طراحی ماشینهایی که در عین سادگی ، با نیروی محرک خیلی کم بتواند نیروی مقاوم فوق العاده زیادی را جابجا نماید، استفاده نمود.

جک هیدرولیک چیست؟

جک هیدرولیک وسیله‌ای است که در آن نیرویی بر روغن موجود در یک استوانه کوچک وارد می‌شود. این نیرو سبب می‌شود که روغن غیر قابل تراکم به استوانه بزرگ منتقل شود. روغن به پیستون استوانه بزرگ فشار می‌آورد و باعث بلند شدن بار روی استوانه (مثلا ماشین) می‌شود. مکانیزم کار ماشینهای جرثقیل ، و غیره نیز چنین می‌باشد که در عین سادگی ، کار مفید زیادی با بازده بالا انجام می‌دهد.

در ساختمان جک هیدرولیک از این واقعیت استفاده می‌شود که روغن تقریبا تراکم ناپذیر است و نیروی وارد بر خود را منتقل می‌کند. فشار وارد بر پیستون کوچک عینا به پیستون بزرگ منتقل می‌شود و آنرا به طرف بالا می‌راند.

مزیت مکانیکی جک هیدرولیک

 

فشارهای وارد بر استوانه‌ها که همان نیروی وارد بر واحد سطح یعنی P = F/A است، باهم برابرند. بنابراین:

Pe = Pl

به عبارت دیگر می‌توان نوشت:

Fe/Ae = Fl/Al

که در آن F همان نیروهای مقاوم و محرک ، A همان سطح مقطع دو پیستون می‌باشد. در حالت ساده‌تر مزیت مکانیکی قسمت هیدرولیکی جک بصورت زیر در می‌آید:

AA = Ml/Ae

دسته جک نیز یک اهرم نوع دوم است و مزیت مکانیکی مخصوص به خود را دارد. دسته اهرم نیروی محرک را افزایش می‌دهد. بر جک هیدرولیک نیروی مفید دسته وارد می‌شود و جک این نیرو را افزایش می‌دهد. از اینرو مزیت مکانیکی کل دستگاه برابر مزیت مکانیکی این دو قسمت می‌باشد.

آیا جک هیدرولیک مقدار کار را افزایش می‌دهد؟

دستگاهی وجود ندارد که بتواند مقدار کار را افزایش دهد. هر مقدار روغن که از استوانه کوچک خارج شود، همان مقدار وارد استوانه بزرگ می‌شود. در هر دو استوانه این حجم روغن برابر است با حاصلضرب سطح مقطع استوانه در فاصله‌ای که پیستون جابجا می‌شود. چون این حجمها باهم برابرند، بنابراین:

AeΔSe = AlΔSl

اگر ماشین را بدون اصطکاک در نظر بگیریم داریم:

MA=Al/Ae=ΔSe/ΔSl

و چون MA = Fl/Fe بنابراین:

FlΔSl = FeΔSe

که نشان می‌دهد در حالت ایده‌آل کار خروجی یا مفید با کار ورودی یا داده شده برابر است. در قرقره ، اهرم و جک هیدرولیک ، وقتی اصطکاک وجود ندارد، کار خروجی با کار ورودی برابر است. این گفته در مورد سایر ماشینها نیز برقرار است. در چنین شرایطی مزیت مکانیکی ایده‌آل (یعنی بدون اصطکاک) هر ماشینی را می‌توان با بررسی هندسه ماشین بدست آورد. با ملاحظه معادله MA = ΔSe/ΔSl حتی در پیچیده‌ترین ماشین ، می‌توان مزیت مکانیکی ایده‌آل را فقط با دانستن اینکه وقتی نیروی محرک را در مسافت معینی حرکت می‌دهیم، نیروی مقاوم چقدر جابجا می‌شود، پیدا کرد.

 کاربردهای جک هیدرولیک

در بلند کردن ماشین‌آلات سنگین ، ماشینهای کمپرسور ، جرثقیلها ، پالایشگاهها ، حفاریهای زیر زمینی ، برج سازی و معماری ، کلیه وسایل نقلیه و غیره از خود این وسیله بسیار ساده و مفید یا مکانیزم کارش استفاده می‌شود.

انواع پمپ هاي هيدروليك

با وجود تنوع پمپ هاي هيدروليك ، مي توان آنها را در چند گروه تقسيم بندي كرد: دنده اي، پره اي و پيستوني. پمپ هاي دنده اي: پمپ هاي دنده اي بسيار ارزان بوده، به نوع سيال هيدروليك حساسيت ندارند. اين پمپ ها در مقابل آلودگي مقاوم بوده و نياز به طراحي هاي خاص ندارند. فشار در اين سيستم ها بين1500 تا 5000psi مي باشد. اين ويژگي ها باعث شده كه در تجهيزات متحرك، بيشتر از پمپ هاي دنده اي استفاده شود چرا كه كه مقاومتشان در برابر آلودگي بسيار زياد و كارايي آنها در خور توجه است.

درون پمپ هاي دنده اي، دو چرخ دنده در خلاف جهت يكديگر حركت مي كنند كه اولي به شفت موتور متصل بوده و دومي چرخ دنده هرز گرد (Idler) مي باشد. سيال از محفظه ورودي وارد پمپ شده و از ميان دندانه هاي چرخ دنده ها و جداره محفظه پمپ منتقل مي شود. به دليل فواصل بسيار كم، سيال از مركز پمپ نمي تواند عبور كند. پس دو جريان دوباره با هم مخلوط شده و به سمت خروجي پمپ رانده مي شوند.

پمپ هاي دنده اي مي توانند در هر دو جهت عمل كنند و اين ويژگي قابل توجهي در بعضي از سيستم ها است. از آنجايي كه ياتاقان هاي اين پمپ ها تنها از يك جهت، (جهت فشار پمپ خروجي) تحت بار قرار دارند، به پمپ هاي نامتوازن معروفند. در نتيجه اين پمپ ها به طور نامتناسب و تنها از يك جهت، تمايل به سايش دارند. پمپ هاي دنده اي در انواع خارجي (كه بسيار متداول است)، داخلي و يا از نوع چرخان (Gerotor) ساخته مي شوند(شكل1)

پمپ هاي پره اي: اين نوع پمپ ها كارآيي و موارد استفاده زيادي دارند ولي سيال آنها بايد خواص ضد سايش فوق العاده اي داشته باشد. در پمپ هاي پره اي چند نقطه در معرض سايش قرار دارند. اين نقاط نوك پره ها، صفحات دوار و شيار پره ها در روتور هستند. يك مزيت پمپ هاي پره اي اين است كه سايش تمام سطوح آن يكنواخت است و اين وضعيت راندمان را افزايش مي دهد.

هم چنين، پمپ هاي پره اي كه با دو ورودي و دو خروجي در جهات مختلف طراحي مي شوند متوازن بوده و با توجه به اين ويژگي، تنش يكنواخت و كمتري بر روي ياتاقان ها وارد مي شود. مي توان پمپ هاي پره اي را با تغيير شكل مكانيكي محفظه پمپ، به صورت پمپ هاي جا بجايي متغير ساخت كه در نتيجه راندمان آنها افزايش يافته و البته هزينه اوليه‌(ساخت) پمپ ها نيز افزايش مي يابد. تحمل پمپ هاي پره اي در مقابل آلودگي كم است و ذرات آلودگي، سبب سايش غيرمنتظره پره ها مي شود. پمپ هاي پره اي در محدوده فشار1000 تا 3000psi توانايي عملكرد دارند.

 پمپ هاي پيستوني: اين نوع از پمپ ها به دو شكل شعاعي يا محوري طراحي مي شوند. در نوع شعاعي، پيستون ها از محور يك محفظه استوانه اي حلقوي شكل شبيه چرخ پره دار مي چرخند و در نوع محوري، محور گردش پيستون ها و سيلندرها موازي مي باشد. از طرفي لقي هاي پمپ هاي پيستوني بسيار كم بوده و به همين دليل اين پمپ ها به ذرات ناشي از سايش خراشيدگي بسيار حساس هستند.

پمپ هاي پيستوني به دو شكلِ جابجايي ثابت يا متغير طراحي مي شوند. طراحي هاي جابجايي متغير، تغييرات فشار سيستم را جبران مي كنند و داراي بيشترين بازدهي (يعني بين92 تا97 درصد) هستند.

صرف نظر از نوع پمپ ها، سيستم هاي هيدروليك، بايد قبل از راه اندازي به طور كامل تميز و شسته شوند و كليه منابع آلودگي بايد تا حد امكان به حداقل برسد. هم چنين سيال هيدروليك نو يا سيال هيدروليك كه سر ريز مي شود بايد قبل از استفاده در سيستم به طور كامل فيلتر شود چرا كه يك سيستم هيدروليكي كه در شرايط مناسب عملياتي به سر مي برد و سيال هيدروليك آن فيلتر مي شود، در مقايسه با يك سيال هيدروليك نو تميزتر است. علاوه بر تميزي سيال، نوع سيال، محدوده دما، گرانروي سيال، شرايط سيال (اكسيداسيون، آلودگي با آب و غيره) فشاري كه بر روي سيستم وارد مي شود، ورود هوا و كاويتاسيون، همگي بر پمپ و عمر آن موثر هستند.

 

انرژی 

اطلاعات تکميلي

  • منبع: www.spmcontrols.com
  • حوزه کاربرد: سیستم انتقال قدرت هیدرولیک